Asymptotic Bayesian Generalization Error in Latent Dirichlet Allocation and Stochastic Matrix Factorization

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upper Bound of Bayesian Generalization Error in Stochastic Matrix Factorization

Stochastic matrix factorization (SMF) has proposed and it can be understood as a restriction to non-negative matrix factorization (NMF). SMF is useful for inference of topic models, NMF for binary matrices data, and Bayesian Network. However, it needs some strong assumption to reach unique factorization in SMF and also theoretical prediction accuracy has not yet clarified. In this paper, we stu...

متن کامل

Distributed Latent Dirichlet Allocation via Tensor Factorization

We describe a distributed implementation for Latent Dirichlet Allocation parameter estimation based upon the method of moments.

متن کامل

Sparse stochastic inference for latent Dirichlet allocation

We present a hybrid algorithm for Bayesian topic models that combines the efficiency of sparse Gibbs sampling with the scalability of online stochastic inference. We used our algorithm to analyze a corpus of 1.2 million books (33 billion words) with thousands of topics. Our approach reduces the bias of variational inference and generalizes to many Bayesian hidden-variable models.

متن کامل

Bayesian Matrix Factorization with Side Information and Dirichlet Process Mixtures

Matrix factorization is a fundamental technique in machine learning that is applicable to collaborative filtering, information retrieval and many other areas. In collaborative filtering and many other tasks, the objective is to fill in missing elements of a sparse data matrix. One of the biggest challenges in this case is filling in a column or row of the matrix with very few observations. In t...

متن کامل

Spatial Latent Dirichlet Allocation

In recent years, the language model Latent Dirichlet Allocation (LDA), which clusters co-occurring words into topics, has been widely applied in the computer vision field. However, many of these applications have difficulty with modeling the spatial and temporal structure among visual words, since LDA assumes that a document is a “bag-of-words”. It is also critical to properly design “words” an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SN Computer Science

سال: 2020

ISSN: 2662-995X,2661-8907

DOI: 10.1007/s42979-020-0071-3